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with dimethoxyethane (2 X 150 mL) and pentane (150 mL) 
followed by drying in vacuo (45 min). A brick-red solid (50.6 
g, 92%) was obtained. 

2-Amino Alcohol Synthesis. A dry 250-mL flask was charged 
with NbCl3(DME) (2.0 g, 6.9 mmol) and tetrahydrofuran11 (ca. 
80 mL). A tetrahydrofuran solution (4 mL) of the imine16 (6.9 
mmol) was then added dropwise (via syringe) over 30 s to the 
stirred mixture. When the solution became a homogeneous dark 
green (or yellow-green) color (ca. 1 min), the aldehyde or ketone 
(4.6 mmol) in tetrahydrofuran (ca. 2 mL) was added dropwise 
over 30 s. After stirring for 30 min the reaction was poured into 
a separatory funnel and treated with potassium hydroxide (10% 
w/v, 75 mL) and extracted with ether (2 X 150 mL). The 
combined ether layers were dried briefly over MgSO4 and filtered. 
The ether was removed in vacuo yielding the crude product as 
an oil which was purified by flash chromatography17 (silica gel, 
230-400 mesh, hexane/ethyl acetate). 
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While the Reformatsky reaction2 (see eq 1) is celebrating the 
centennial of its discovery this year, the mechanism is still a matter 
of controversy. Early mechanistic suggestions3 have centered 
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around the rearrangement of adducts 1 and 2 of the two possible 
monomeric forms of the Reformatsky reagent (RR) with the 
majority of the chemical evidence favoring the enolate form 2. 
However, recent X-ray evidence has shown that the RR is dimeric 
in THF,4 throwing doubt on the suggestion that the monomeric 
forms participate at all. Here we report a detailed theoretical 
study of the reaction, with use of the MNDO method5 as im­
plemented by the AMPAC program.7 MNDO has been recently 
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parametrized to handle organozinc compounds.8 The aldehyde 
and ether component of the RR was modelled by formaldehyde 
and dimethyl ether, respectively. 

We first needed to know what MNDO predicts for the coor­
dination number around zinc. We find, on the basis of purely 
energetic considerations, that MNDO favors the coordination 
around zinc to be three. This seems to be at variance with most 
of the available experimental evidence, which indicates that the 
usual coordination number for zinc in solution is four.8 This 
discrepancy is not surprising because MNDO tends to overestimate 
repulsions between neutral atoms.9 It should be noted here that 
we have also carried out extensive MNDO calculations on the 
mechanism of the Reformatsky reaction where the zinc is tetra-
coordinated (i.e., with dimethyl ether as well as formaldehyde), 
and the results do not differ significantly from those we present 
below. 

Chart I gives the reaction profile for the rearrangement of 1 
and 2 to 3. Our calculations predict 1 to be more stable than 2 
by about 7.8 kcal/mol, 1 and 2 interconverting by a 1,3-shift with 
an £ a of 26.5 kcal/mol. We next located the transition states 
(TSs) for the formation of 3 from either 1 or 2. 1 can rearrange 
to give 3, by a 1,4-shift, with an £ a of 55 kcal/mol, while the 
formation of 3 from 2 only requires 15.45 kcal/mol. 

The differences in the £as are easily understood in terms of the 
aromaticity or antiaromaticity of the respective TSs.10 The TS 
for the 1,4-shift contains four delocalized electrons and is therefore 
antiaromatic.10 The TS for conversion of 2 to 3 contains six 
delocalized electrons and is therefore aromatic. The latter reaction 
involves a [3,3]-sigmatropic shift, analogous to a Cope or Claisen 
rearrangement. We therefore would like to classify this rear­
rangement as a metallo [3,3]-sigmatropic shift (or metalloclaisen). 
Previous authors11 have pointed out that the Reformatsky reaction 
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can proceed by a pericyclic mechanism, without, however, iden­
tifying it as a [3,3]-sigmatropic process. It should be noted here 
that TSs of this type have been invoked in the case of the aldol 
reaction.12 The TS for the metalloclaisen reaction adopts a chair 
conformation as one would expect by analogy with the Cope or 
Claisen rearrangements.13 

The minimum energy reaction path for the formation of product 
in the case of the monomeric species is (see Chart I) first the 
conversion of 1 to 2 which then in the next step gives 3. The 
rate-determining step for this reaction is predicted to be not the 
formation of the final product 3 but the formation of 2. Therefore, 
the £a, which for the moment neglects the involvement of dimer, 
is predicted to be 26.5 kcal/mol. 

We next carried out calculations for the dimeric form of the 
RR. Our calculations predict dimerization to be exothermic by 
about 5 kcal/mol; implying that the RR should exist as a dimer 
in solution or in the crystal. This agrees with the experimental 
evidence that the RR is indeed a dimer in the solid state.4 The 
authors responsible for the crystal structure of the RR pointed 
out that there are two possible pathways by which the RR can 
react to form product.4 The first is a 1,3-sigmatropic shift of 
methylene carbon to carbonyl carbon while the second involves 
attachment of the carbonyl carbon to the transannular methylene 
(six-centered TS). These authors favored the latter reaction path. 
We have studied both pathways. While we found a TS for the 
1,3-sigmatropic reaction, no TS could be located for the alternative 
reaction path. We found that this latter pathway broke apart the 
dimer at a great energetic cost, while the former led smoothly to 
product 5. The reaction profile for the dimer is given in Chart 
II. 

The £ a for product formation in the case of the dimer is 47.7 
kcal/mol, and in order for us to compare this figure with that of 
the monomer reaction we have to include the heat of dimerization 
(A//dim) of the monomer. For the A//dim of 1 we arrive at a value 
of 5.3 kcal/mol, hence the £ a for the conversion of 4 into 3 is 31.8 

(12) See, for example: Wanat, R. A.; Collum, D. B. J. Am. Chem. Soc. 
1985, 107, 2078 and references cited therein. 

(13) Doering, W. v. E.; Roth, W. R. Tetrahedron 1962, 18, 67. 

kcal/mol. However, since we underestimate the stability of 
four-coordinate zinc we feel that this Ea probably represents a 
lower limit to the actual Ev Regardless, we feel that the Re-
formatsky reaction occurs via the monomeric form of the RR, 
because unless our A#dim is underestimated by over 15.8 kcal/mol 
the dimeric form of the RR cannot be competitive with the mo­
nomeric form. 
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The mechanistic and stereoelectronic aspects of acetal hydrolysis 
have attracted a great deal of attention from both organic chemists 
and biochemists in recent years.1"3 The continuing interest is 
due largely to the biological importance of the reaction. A sig­
nificant objective has been to understand the mode of action of 
lysozyme.4'5 Model studies related to the lysozyme problem 
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